Chapter 1 Project Overview The U.S. Environmental Protection Agency's Great Lakes National Program Office (GLNPO) and its partners instituted the Lake Michigan Mass Balance (LMMB) Study to measure and model the concentrations of representative pollutants within important compartments of the Lake Michigan ecosystem. Concentrations of polychlorinated biphenyls (PCBs), *trans*-nonachlor, atrazine, and mercury in the atmosphere, tributaries, lake water, sediments, and food webs of Lake Michigan. This document summarizes the mercury data collected as part of the LMMB Study. # 1.1 Background The Great Lakes, which contain 20% of the world's freshwater, are a globally important natural resource that are currently threatened by multiple stressors. While significant progress has been made to improve the quality of the lakes, pollutant loads from point, non-point, atmospheric, and legacy sources continue to impair ecosystem functions and limit the attainability of designated uses of these resources. Fish consumption advisories and beach closings continue to be issued, emphasizing the human health concerns from lake contamination. Physical and biological stressors such as invasion of non-native species and habitat loss also continue to threaten the biological diversity and integrity of the Great Lakes. The United States and Canada have recognized the significance and importance of the Great Lakes as a natural resource and have taken steps to restore and protect the lakes. In 1978, both countries signed the Great Lakes Water Quality Agreement (GLWQA). This agreement calls for the restoration and maintenance of the chemical, physical, and biological integrity of the Great Lakes by developing plans to monitor and limit pollutant flows into the lakes. The GLWQA, as well as Section 118(c) of the Clean Water Act, required the development of Lake-wide Management Plans (LaMPs) for each Great Lake. The purpose of these LaMPs is to document an approach to reducing inputs of critical pollutants to the Great Lakes and restoring and maintaining Great Lakes integrity. To assist in developing these LaMPs and to monitor progress in pollutant reduction, Federal, State, Tribal, and local entities have instituted Enhanced Monitoring Plans. Monitoring is essential to the development of baseline conditions for the Great Lakes and provides a sound scientific base of information to guide future toxic load reduction efforts. The LMMB Study is a part of the Enhanced Monitoring Plan for Lake Michigan. The LMMB Study was a coordinated effort among Federal, State, and academic scientists to monitor tributary and atmospheric pollutant loads, develop source inventories of toxic substances, and evaluate the fates and effects of these pollutants in Lake Michigan. A mass balance modeling approach provides the predictive ability to determine the environmental benefits of specific load reduction scenarios for toxic substances and the time required to realize those benefits. This predictive ability will allow Federal, State, Tribal, and local agencies to make more informed load reduction decisions. # 1.2 Description The LMMB Study used a mass balance approach to evaluate the sources, transport, and fate of contaminants in the Lake Michigan ecosystem. A mass balance approach is based on the law of conservation of mass, which states that the amount of a pollutant accumulating in a system is equal to the amount entering the system, less the amount of that pollutant leaving or chemically changed in the system (Figure 1-1). If the system is defined as the Lake Michigan/ Green Bay water column, then pollutants may enter the system via tributaries, direct runoff, the atmosphere (wet deposition, dry deposition, and sorption from the vapor phase), the sediment, and the Straits of Mackinac. Pollutants may leave the system through volatilization to the atmosphere, loss to the sediment, or discharge through the Straits of Mackinac and the Chicago water diversion. The law of conservation of mass also can be applied to other systems such as biota, sediment, or air. The LMMB Study measured contaminant concentrations in various inputs and ecosystem compartments over spatial and temporal scales. Mathematical models that track the transport and fate of contaminants within Lake Michigan are being developed and calibrated using these field data. The LMMB Study is the first lake-wide application of a mass balance determination for What is mass balance? Mass_{transformed} Mass_{stored} Mass_{stored} Mass_{in} = Mass_{transformed} + Mass_{stored} + Mass_{out} toxics in the Great Lakes and will serve as the basis of future mass budget/mass balance efforts. # 1.3 Scope #### 1.3.1 Modeled Pollutants When EPA published the *Water Quality Guidance for the Great Lakes System* (58 FR 20802), the Agency established water quality criteria for 29 pollutants. Those criteria are designed to protect aquatic life, terrestrial wildlife, and human health. PCBs, *trans*-nonachlor, and mercury are included in the list of 29 pollutants. The water quality criteria and values proposed in the guidance apply to all of the ambient waters of the Great Lakes system, regardless of the sources of pollutants in those waters. The proposed criteria provide a uniform basis for integrating Federal, State, and Tribal efforts to protect and restore the Great Lakes ecosystem. The number of pollutants that can be intensively monitored and modeled in the Great Lakes system is limited by the resources available to collect and analyze thousands of samples, assure the quality of the results, manage the data, and develop and calibrate the necessary models. Therefore, the LMMB Study focused on constructing mass balance models for a limited group of pollutants. PCBs, *trans*-nonachlor, atrazine, and mercury were selected for inclusion in the LMMB Study because these pollutants currently or potentially pose a risk to aquatic and terrestrial organisms (including humans) in the Lake Michigan ecosystem. These pollutants also were selected to cover a wide range of chemical and physical properties and represent other classes of compounds which pose current or potential problems. Once a mass budget for selected pollutants is established and a mass balance model calibrated, additional contaminants can be modeled with limited data and future resources can be devoted to activities such as emission inventories and dispersion modeling. #### 1.3.1.1 Polychlorinated Biphenyls PCBs are a class of man-made, chlorinated, organic chemicals that include 209 congeners, or specific PCB compounds. The highly stable, nonflammable, non-conductive properties of these compounds have made them useful in a variety of products including electrical transformers and capacitors, plastics, rubber, paints, adhesives, and sealants. PCBs were produced for such industrial uses in the form of complex mixtures under the trade name "Aroclor" and were commercially available from 1930 through 1977, when EPA banned their production due to environmental and public health concerns. PCBs also may be produced by combustion processes, including incineration, and can be found in stack emissions and ash from incinerators. Seven Aroclor formulations were included in the Priority Pollutant List developed by the EPA Office of Water under the auspices of the Clean Water Act because they were found by EPA in the effluents from one or more wastewater treatment facilities. Aroclors may have entered the Great Lakes through other means, including spills or improper disposal of transformer fluids, contaminated soils washing into the watershed, or discharges from ships. The PCBs produced by combustion processes may be released to the atmosphere, where they are transported in both vapor and particulate phases and enter the lakes through either dry deposition or precipitation events (e.g., rain). The stability and persistence of PCBs, which made them useful in industrial applications, have also made these compounds ubiquitous in the environment. PCBs do not readily degrade and thus accumulate in water bodies and aquatic sediments. PCBs also bioaccumulate, or buildup, in living tissues. Levels of PCBs in some fish from Lake Michigan exceed U.S. Food and Drug Administration tolerances, prompting closure of some commercial fisheries and issuance of fish consumption advisories. PCBs are a probable human carcinogen, and human health effects of PCB exposure include stomach, kidney, and liver damage, liver and biliary tract cancer, and reproductive effects, including effects on the fetus after exposure of the mother. PCB congeners exhibit a wide range of physical and chemical properties (e.g., vapor pressures, solubilities, boiling points), are relatively resistant to degradation, and are ubiquitous. These properties make them ideal surrogates for a wide range of organic compounds from anthropogenic sources. In the LMMB Study, PCBs were selected as a model for conservative organic compounds (USEPA, 1997a). #### 1.3.1.2 trans-Nonachlor *trans*-Nonachlor is a component of the pesticide chlordane. Chlordane is a mixture of chlorinated hydrocarbons that was manufactured and used as a pesticide from 1948 to 1988. Prior to 1983, approximately 3.6 million pounds of chlordane were used annually in the U.S. In 1988, EPA banned all production and use of chlordane in the U.S. Like PCBs, chlordane is relatively persistent and bioaccumulative. *trans*-Nonachlor is the most bioaccumulative of the chlordanes. *trans*-Nonachlor is a probable human carcinogen. Other human health effects include neurological effects, blood dyscrasia, hepatoxicity, immunotoxicity, and endocrine system disruption. Historically, *trans*-nonachlor may have entered the Great Lakes through a variety of means related to the application of chlordane, including improper or indiscriminate application, improper cleaning and disposal of pesticide application equipment, or contaminated soils washing into the watershed. In the LMMB Study, *trans*-nonachlor was selected as a model for the cyclodiene pesticides (USEPA, 1997a). #### 1.3.1.3 Atrazine Atrazine is a herbicide based on a triazine ring structure with three carbon atoms alternating with three nitrogen atoms. Atrazine is the most widely used herbicide in the U.S. for corn and sorghum production. Atrazine has been used as an agricultural herbicide since 1959 and 64 to 75 million pounds of atrazine are used annually in the U.S. Atrazine is extensively used in the upper Midwest, including the Lake Michigan watershed, where it is primarily associated with corn crops. Unlike PCBs and *trans*-nonachlor, atrazine is not extremely persistent or bioaccumulative. Atrazine is moderately susceptible to biodegradation, with a half-life in soils of about 60 - 150 days. Atrazine may persist considerably longer in water and is relatively non-reactive in the atmosphere. Atrazine rarely exceeds the maximum contaminant level (MCL) set by USEPA as a drinking water standard, but localized peak values can exceed the MCL following rainfall events after atrazine application. Atrazine can cause human health effects such as weight loss, cardiovascular damage, muscle and adrenal degeneration, and congestion of heart, lungs, and kidneys. Atrazine is also toxic to aquatic plants. In the LMMB Study, atrazine was selected as a model for reactive, biodegradable compounds in current use (USEPA, 1997A). # 1.3.1.4 *Mercury* Mercury is a naturally-occurring toxic metal. Mercury is used in battery cells, barometers, thermometers, switches, fluorescent lamps, and as a catalyst in the oxidation of organic compounds. Global releases of mercury in the environment are both natural and anthropogenic (caused by human activity). It is estimated that about 5,500 metric tons of mercury are released annually to the air, soil, and water from anthropogenic and natural sources (USEPA 1997b). These sources include combustion of various fuels such as coal; mining, smelting and manufacturing activities; wastewater; agricultural, animal and food wastes; chlor-alkali plants; and pulp and paper mills. As an elemental metal, mercury is extremely persistent in all media. Mercury also bioaccumulates with reported bioconcentration factors in fish tissues in the range of 63,000 to 100,000. Mercury is a neurotoxin and possible human carcinogen and causes the following human health effects: stomach, large intestine, brain, lung, and kidney damage; blood pressure and heart rate increase, and fetus damage. In the LMMB Study, mercury was selected as a model for bioaccumulative metals (USEPA, 1997a). Table 1-1. Characteristics of Lake Michigan Mass Balance Modeled Pollutants | Pollutant | Sources | Uses | Toxic Effects | Biocon-
centration
Factor ¹ | EPA
Regulatory
Standards ² | |---|---|--|---|--|--| | PCBs | Waste incinerators (unintentional byproducts of combustion) Industrial dischargers Electrical power | Electrical transformers and capacitors Carbonless copy paper Plasticizers Hydraulic fluids | Probable human carcinogen Hearing and vision impairment Liver function alterations Reproductive impairment and deformities in fish and wildlife | 1,800 to
180,000 | MCL = 0.5 µg/L
CCC = 14 ng/L
HH = 0.17 ng/L | | <i>trans</i> -
Nona-
chlor ³ | Application to
crops and gardens | Pesticide on corn
and citrus crops Pesticide on lawns
and gardens | Probable human carcinogen Nervous system effects Blood system effects Liver, kidney, heart, lung, spleen, and adrenal gland damage | 4,000 to 40,000 | MCL = 2 µg/L
CMC = 2.4 µg/L
CCC = 4.3 ng/L
HH = 2.1 ng/L | | Atrazine | Application to crops | Herbicide for corn
and sorghum
production | Weight loss Cardiovascular damage Muscle and adrenal
degeneration Congestion of heart, lungs,
and kidneys Toxic to aquatic plants | 2 to 100 | MCL = $3 \mu g/L$
CMC ⁴ = $350 \mu g/L$
CCC ⁴ = $12 \mu g/L$ | | Mercury | Waste disposal Manufacturing processes Energy production Ore processing Municipal and medical waste incinerators Chlor-alkali factories Fuel combustion | Battery cells Barometers Dental fillings Thermometers Switches Fluorescent lamps | Possible human carcinogen Damage to brain and kidneys Adverse affects on the developing fetus, sperm, and male reproductive organs | 63,000 to
100,000 | MCL = $2 \mu g/L$
CMC = $1.4 \mu g/L$
CCC = $0.77 \mu g/L$
HH = 50 ng/L
FWA ⁵ = $2.4 \mu g/L$
FWC ⁵ = 12 ng/L
Wildlife ⁶ = 1.3 ng/L | ¹ From: USEPA. 1995a. National Primary Drinking Water Regulations, Contaminant Specific Fact Sheets, Inorganic Chemicals, Technical Version. EPA 811/F-95/002-T. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.; and USEPA. 1995b. National Primary Drinking Water Regulations, Contaminant Specific Fact Sheets, Synthetic Organic Chemicals, Technical Version. EPA 811/F-95/003-T. U.S. Environmental Protection Agency, Office of Water, Washington, DC. ³ Characteristics presented are for chlordane. *trans*-Nonachlor is a principle component of the pesticide chlordane. ² MCL = Maximum Contaminant Level for drinking water. CMC = Criterion Maximum Concentration for protection of aquatic life from acute toxicity. CCC = Criterion Continuous Concentration for protection of aquatic life from chronic toxicity. HH = water quality criteria for protection of human health from water and fish consumption. Data from: USEPA. 1999. *National Recommended Water Quality Criteria-Correction*. EPA 822/Z-99/001. U.S. Environmental Protection Agency, Office of Water, Washington, DC. ⁴ Draft water quality criteria for protection of aquatic life. From: USEPA. 2001a. *Ambient Aquatic Life Water Quality Criteria for Atrazine*. U.S. Environmental Protection Agency, Office of Water, Washington, DC. ⁵ FWA = Freshwater acute water quality criterion. FWC = Freshwater chronic water quality criterion. From National Toxics Rule (58 FR 60848). ⁶ Wildlife criterion. From the Stay of Federal Water Quality Criteria for Metals (60 FR 22208), 40 CFR 131.36 and the Water Quality Guidance for the Great Lakes System (40 CFR 132). ## 1.3.2 Other Measured Parameters In addition to the four chemicals modeled in the LMMB Study, many other chemicals and parameters were measured in the LMMB Study as part of the Enhanced Monitoring Program. A survey of these chemicals and parameters will aid in understanding the overall ecological integrity of Lake Michigan. These additional parameters include various biological indicators, meteorological parameters, and organic, metal, and conventional chemicals in Lake Michigan. A complete listing of all parameters included in this study is provided in Table 1-2. Table 1-2. Lake Michigan Mass Balance Study Parameters | Organics | | | | | |---------------------------------|--------------------------|--|--|--| | acenaphthene p,p'-DDT | | | | | | acenaphthylene | endosulfan sulfate | | | | | aldrin | endosulfan I | | | | | anthracene | endosulfan II | | | | | atrazine | endrin | | | | | α-BHC | | | | | | | endrin aldehyde | | | | | β-BHC | endrin ketone | | | | | δ-BHC | fluoranthene | | | | | γ-BHC (Lindane) | fluorene | | | | | benzo [a] anthracene | heptachlor | | | | | benzo [<i>g,h,i</i>] perylene | heptachlor epoxide | | | | | benzo [b] fluoranthene | hexachlorobenzene (HCB) | | | | | benzo [k] fluoranthene | indeno [1,2,3-cd] pyrene | | | | | benzo [<i>e</i>] pyrene | mirex | | | | | benzo [<i>a</i>] pyrene | trans-nonachlor | | | | | lpha-chlordane | oxychlordane | | | | | γ-chlordane | PCB congeners | | | | | chrysene | phenanthrene | | | | | coronene | pyrene | | | | | p,p ² DDE | retene | | | | | p,p ² DDD | toxaphene | | | | | Metals | | | | | | aluminum | magnesium | | | | | arsenic | manganese | | | | | calcium | sodium | | | | | cadmium | nickel | | | | | chromium | lead | | | | | cesium | selenium | | | | | copper | thorium | | | | | iron | titanium | | | | | mercury | vanadium | | | | | potassium | zinc | | | | Table 1-2. Lake Michigan Mass Balance Study Parameters | Conventionals | | | | | |---------------------------|------------------------------|--|--|--| | | | | | | | alkalinity | particulate organic carbon | | | | | ammonia | percent moisture | | | | | bromine | pН | | | | | chloride | phosphorous | | | | | chlorine sulfate | silica | | | | | conductivity | silicon | | | | | dissolved organic carbon | temperature | | | | | dissolved oxygen | total Kjeldahl nitrogen | | | | | dissolved phosphorous | total organic carbon | | | | | dissolved reactive silica | total phosphorous | | | | | dry weight fraction | total suspended particulates | | | | | elemental carbon | total hardness | | | | | nitrate | turbidity | | | | | <i>ortho</i> -phosphorous | | | | | | Biologicals | | | | | | fish species | fish weight | | | | | fish age | fish length | | | | | fish maturity | fish taxonomy | | | | | chlorophyll a | fish diet analysis | | | | | fish lipid amount | primary productivity | | | | | Meteorological | | | | | | air temperature | wind direction | | | | | relative humidity | wind speed | | | | | barometric pressure | visibility | | | | | weather conditions | wave height and direction | | | | # 1.3.3 Measured Compartments In the LMMB Study, contaminants were measured in the following compartments: - Open-Lake Water Column The water column in the open lake was sampled and analyzed for the modeled pollutants. - **Tributaries** Tributary water columns were sampled and analyzed for the modeled pollutants. - Fish Top predators and forage-base species were sampled and analyzed for diet analysis and contaminant burden. Fish were not analyzed for atrazine because atrazine is not bioaccumulative. - Lower Pelagic Food Web Phytoplankton and zooplankton were sampled and analyzed for species diversity, taxonomy, and contaminant burden. The lower pelagic food web was not analyzed for atrazine because atrazine is not bioaccumulative. - Sediments Cores were collected and trap devices were used to collect sediment for determination of contaminants and sedimentation rates. Sediments were not analyzed for atrazine because atrazine is relatively water soluble, degradable, and does not generally accumulate in sediments. - **Atmosphere** Vapor-, particulate-, and precipitation-phase samples were collected and analyzed for the modeled pollutants For the modeled pollutants, more than 20,000 samples were collected and analyzed, including more than 9000 quality control (QC) samples, at more than 300 sampling locations (Figure 1-2). Field data collection activities were initially envisioned as a one-year effort. However, it became evident early into the project that a longer collection period would be necessary to provide a full year of concurrent information on contaminant loads and ambient concentrations for modeling purposes. Therefore, field sampling occurred from April 1994 to October 1995. Figure 1-2. Lake Michigan Mass Balance Study Sampling Locations # 1.4 Objectives The goal of the LMMB Study was to develop a sound, scientific base of information to guide future toxic load reduction efforts at the Federal, State, Tribal, and local levels. To meet this goal, the four following LMMB Study objectives were developed: - Estimate pollutant loading rates Environmental sampling of major media will allow estimation of relative loading rates of critical pollutants to the Lake Michigan Basin. - **Establish baseline** Environmental sampling and estimated loading rates will establish a baseline against which future progress and contaminant reductions can be gauged. - **Predict benefits associated with load reductions** The completed mass balance model will provide a predictive tool that environmental decision-makers and managers may use to evaluate the benefits of specific load reduction scenarios. - Understand ecosystem dynamics Information from the extensive LMMB monitoring and modeling efforts will improve our scientific understanding of the environmental processes governing contaminant cycling and availability within relatively closed ecosystems. # 1.5 Design ## 1.5.1 Organization The Great Lakes National Program Office proposed a mass balance approach to provide coherent, ecosystem-based evaluation of toxics in Lake Michigan. GLNPO served as the program sponsor for the LMMB Study. GLNPO formed two committees to coordinate study planning, the Program Steering Committee and the Technical Coordinating Committee. These committees were comprised of scientists from Federal, State, academic, and commercial institutions (see Section 1.5.2, Study Participants). The committees administered a wide variety of tasks including: planning the project, locating the funding, designing the sample collection, coordinating sample collection activities, locating qualified laboratories, coordinating analytical activities, assembling the data, assuring the quality of the data, assembling skilled modelers, developing the models, and communicating interim and final project results. The National Health and Environment Effects Research Laboratory (NHEERL)/Mid-Continent Ecology Division (MED)/Large Lakes and Rivers Forecasting Research Branch (LLRFRB) at Gross Ile, Michigan, in cooperation with the National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL) and the Atmospheric Sciences Modeling Division are supporting the modeling component of the mass balance study by developing a suite of integrated mass balance models to simulate the transport, fate, and bioaccumulation of the study target analytes. ## 1.5.2 Study Participants The LMMB Study was a coordinated effort among Federal, State, academic, and commercial institutions. The following agencies and organizations have all played roles in ensuring the success of the LMMB Study. Except for the three organizations indicated with an asterisk (*), all of the participants were members of the LMMB steering committee. #### Federal and International - USEPA Great Lakes National Program Office (Program Sponsor) - USEPA Region 5 Water Division - USEPA Region 5 Air Division - USEPA Office of Research and Development (ORD) NHEERL/MED/LLRFRB - USEPA Office of Research and Development National Exposure Research Laboratory - ► U.S. Department of Interior (USDOI) U.S. Geological Survey (USGS) Water Resources Division - USDOI USGS Biological Resources Division Great Lakes Science Center (GLSC) - U.S. Fish and Wildlife Service (USFWS) - ► U.S. Department of Commerce NOAA/GLERL - USEPA Office of Air and Radiation* - USEPA Office of Water* - ► U.S. Department of Energy, Battelle Northwest - ► Environment Canada* #### State - ► Illinois Department of Natural Resources - Illinois Water Survey - Indiana Department of Environmental Management - Michigan Department of Environmental Quality (MDEQ) - Wisconsin Department of Natural Resources - Wisconsin State Lab of Hygiene #### Academic and Commercial - Indiana University - Rutgers University - University of Maryland - University of Michigan - University of Minnesota - University of Wisconsin - Grace Analytical #### 1.5.3 Workgroups Eleven workgroups were formed to provide oversight and management of specific project elements. The workgroups facilitated planning and implementation of the study in a coordinated and systematic fashion. The workgroups communicated regularly through participation in monthly conference calls and annual "all-hands" meetings. Workgroup chairs were selected and were responsible for managing tasks under the purview of the workgroup and communicating the status of activities to other workgroups. The workgroups and workgroup chairs are listed below. - Program Steering Committee Paul Horvatin (USEPA/GLNPO) - ► Technical Coordinating Committee Paul Horvatin (USEPA/GLNPO) - Modeling Workgroup William Richardson (USEPA/ORD/NHEERL/MED/LLRFRB) - Air Monitoring Workgroup Jackie Bode (USEPA/GLNPO) - ► Biota Workgroup Paul Bertram (USEPA/GLNPO) and John Gannon (USDOI/USGS/GLSC) - Chemistry Workgroup David Anderson (USEPA/GLNPO) - Data Management Workgroup Kenneth Klewin and Philip Strobel (USEPA/GLNPO) - ► Lake Monitoring Workgroup Glenn Warren (USEPA/GLNPO) - ► Tributary Monitoring Workgroup Gary Kohlhepp (USEPA Region 5 Water Division) and Robert Day (Michigan Department of Environmental Quality) - Quality Assurance Workgroup Louis Blume and Michael Papp (USEPA/GLNPO) - Sediment Monitoring Workgroup Brian Eadie (NOAA/GLERL) ## 1.5.4 Information Management As program sponsor, GLNPO managed information collected during the LMMB Study. Principal investigators (PIs) participating in the study reported field and analytical data to GLNPO. GLNPO developed a data standard for reporting field and analytical data and a database for storing and retrieving study data. GLNPO also was responsible for conducting data verification activities and releasing verified data to the study modelers and the public. The flow of information is illustrated in Figure 1-3. ## 1.5.4.1 Data Reporting More than twenty organizations produced LMMB data through the collection and analysis of more than 20,000 samples. In the interest of standardization, specific formats (i.e., file formats and codes to represent certain data values) were established for reporting LMMB data. Each format specified the "rules" by which data were submitted, and, in many cases, the allowable values by which they were to be reported. The data reporting formats were designed to capture all pertinent sampling and analytical information from the field crews and laboratory analysts. Data reporting formats and the resulting Great Lakes Environmental Monitoring Database (GLENDA, see Section 1.5.4.2,) were designed to be applicable to projects outside the LMMB as well. For the LMMB Study, special conditions were applied for reporting analytical results. Because the data were being used for input to study models, principal investigators were asked to report analytical results as measured, even when measurements were below estimated detection limits. The quality assurance program discussed in Section 1.5.5 included identifying (i.e., flagging) all analytical results that were below estimated detection limits. Principal investigators (including sampling crews and the analytical laboratories) supplied sample collection and analysis data following the standardized reporting formats if possible. LMMB data were then processed through an automated SAS-based data verification system, the Research Data Management and Quality Control System (RDMQ), for quality assurance/quality control checking. After verification and validation by the PI, the data sets were output in a form specific for upload to GLENDA. Finally, these data sets were uploaded to GLENDA. #### 1.5.4.2 Great Lakes Environmental Monitoring Database Central to the data management effort is a computerized database system to house LMMB Study and other project results. That system, the Great Lakes Environmental Monitoring Database (GLENDA), was developed to provide data entry, storage, access and analysis capabilities to meet the needs of mass balance modelers and other potential users of Great Lakes data. Development of GLENDA began in 1993 with a logical model based on the modernized STORET concept and requirements analysis. GLENDA was developed with the following guiding principles: - **True multi-media scope** water, air, sediment, taxonomy, fish tissue, fish diet, and meteorology data can all be housed in the database - **Data of documented quality** data quality is documented by including results of quality control parameters - Extensive contextual indicators ensures data longevity by including enough information to allow future or secondary users to make use of the data - Flexible and expandable the database is able to accept data from any Great Lakes monitoring project - **National compatibility** GLENDA is compatible with STORET and allows ease of transfer between these large databases In an effort to reduce the data administration burden and ensure consistency of data in this database, GLNPO developed several key tools. Features including standard data definitions, reference tables, standard automated data entry applications, and analytical tools are (or will soon be) available. #### 1.5.4.3 Public Access to LMMB Data All LMMB data that have been verified (through the QC process) and validated (accepted by the PI) are available to the public. Currently, GLNPO requires that written requests be made to obtain LMMB data. The data sets are available in several formats including WK1, DBF, and SD2. More information about the data sets is available on the LMMB web site at: http://www.epa.gov/glnpo. The primary reason for requiring an official request form for LMMB data is to keep track of requests. This allows GLNPO to know how many requests have been made, who has requested data, and what use they intend for the data. This information assists GLNPO in managing and providing public access to Great Lakes data and conducting public outreach activities. As of November 2000, 38 requests for LMMB data have been made: 8 from EPA, 5 from other federal agencies, 5 from state agencies, 5 from universities, 10 from consultants, 3 from international agencies, and 2 from non-profit or other groups. In the future, after all data are verified and validated, GLNPO intends to make condensed versions of the data sets available on the LMMB web site for downloading. This will allow easy public access to LMMB data. Additional details of the information management for the LMMB Study can be found in *The Lake Michigan Mass Balance Study Quality Assurance Report* (USEPA, 2001b). Figure 1-3. Flow of Information in the Lake Michigan Mass Balance Study # 1.5.5 Quality Assurance Program At the outset of the LMMB Study, managers recognized that the data gathered and the models developed from the study would be used extensively by decision makers responsible for making environmental, economic, and policy decisions. Environmental measurements are never true values and always contain some level of uncertainty. Decision makers, therefore, must recognize and be sufficiently comfortable with the uncertainty associated with data on which their decisions are based. In recognition of this requirement, LMMB Study managers established a QA program goal of ensuring that data produced under the LMMB Study would meet defined standards of quality with a specified level of confidence. The QA program prescribed minimum standards to which all organizations collecting data were required to adhere. Data quality was defined, controlled, and assessed through activities implemented within various parameter groups (e.g., organic, inorganic, and biological parameters). QA activities included the following: - QA Program Prior to initiating data collection activities, plans were developed, discussed, and refined to ensure that study objectives were adequately defined and to ensure that all QA activities necessary to meet study objectives were considered and implemented. - **QA Workgroup** EPA established a QA Workgroup whose primary function was to ensure that the overall QA goals of the study were met. - QA Project Plans (QAPPs) EPA worked with PIs to define program objectives, data quality objectives (DQOs), and measurement quality objectives (MQOs) for use in preparing QAPPs. Principal investigators submitted QAPPs to EPA for review and approval. EPA reviewed each QAPP for required QA elements and soundness of planned QA activities. - **Training** Before data collection activities, PIs conducted training sessions to ensure that individuals were capable of properly performing data collection activities for the LMMB Study. - Monthly Conference Calls and Annual Meetings EPA, PIs, and support contractors participated in monthly conference calls and annual meetings to discuss project status and objectives, QA issues, data reporting issues, and project schedules. - **Standardized Data Reporting Format** Principal investigators were required to submit all data in a standardized data reporting format that was designed to ensure consistency in reporting and facilitate data verification, data validation, and database development. - Intercomparison Studies EPA conducted studies to compare performance among different PIs analyzing similar samples. The studies were used to evaluate the comparability and accuracy of program data. - Technical Systems Audits During the study, EPA formally audited each PI's laboratory for compliance with their QAPPs, the overall study objectives, and pre-determined standards of good laboratory practice. - **Data Verification** PIs and EPA evaluated project data against pre-determined MQOs and DQOs to ensure that only data of acceptable quality would be included in the program database. - **Statistical Assessments** EPA made statistical assessments of the LMMB Study data to estimate elements of precision, bias, and uncertainty. - **Data Validation** EPA and modelers are evaluating the data against the model objectives. Comparability of data among PIs participating in the LMMB Study was deemed to be important for successful completion of the study. Therefore, measurement quality objectives (MQOs) for several data attributes were developed by the PIs and defined in the QAPPs. MQOs were designed to control various phases of the measurement process and to ensure that the total measurement uncertainty was within the ranges prescribed by the DQOs. MQOs were defined in terms of six attributes: - Sensitivity/Detectability The determination of the low-range critical value that a method-specific procedure can reliably discern for a given pollutant. Sensitivity measures included, among others, method detection limits (MDLs) as defined at 40 CFR Part 136, system detection limits (SDLs), or instrument detection limits (IDLs). - **Precision** A measure of the degree to which data generated from replicate or repetitive measurements differ from one another. Analysis of duplicate samples was used to assess precision. - **Bias** The degree of agreement between a measured and actual value. Bias was expressed in terms of the recovery of an appropriate standard reference material or spiked sample. - **Completeness** The measure of the number of samples successfully analyzed and reported compared to the number that were scheduled to be collected. - Comparability The confidence with which one data set can be compared to other data sets. - **Representativeness** The degree to which data accurately and precisely represent characteristics of a population, parameter variations at a sampling point, a process condition, or an environmental condition. The PI-defined MQOs also were used as the basis for the data verification process. GLNPO conducted data verification through the LMMB QA Workgroup. The workgroup was chaired by GLNPO's Quality Assurance Manager and consisted of quality control coordinators that were responsible for conducting review of specific data sets. Data verification was performed by comparing all field and QC sample results produced by each PI with their MQOs and with overall LMMB Study objectives. If a result failed to meet predefined criteria, the OC Coordinator contacted the PI to discuss the result, verify that it was correctly reported, and determine if corrective actions were feasible. If the result was correctly reported and corrective actions were not feasible, the results were flagged to inform data users of the failure. These flags were not intended to suggest that data were not useable; rather they were intended to caution the user about an aspect of the data that did not meet the predefined criteria. Data that met all predefined requirements were flagged to indicate that the results had been verified and were determined to meet applicable MOOs. In this way, every data point was assigned one or more validity flags based on the results of the OC checks. GLNPO also derived data quality assessments for each LMMB Study data set for a subset of the attributes listed above, specifically sensitivity, precision, and bias. The LMMB Study modelers and the Large Lakes Research Station Database Manager also perform data quality assessments prior to inputting data into study models. Such activities include verifying the readability of electronic files, identifying missing data, checking units, and identifying outliers. A detailed description of the quality assurance program is included in The Lake Michigan Mass Balance Study Quality Assurance Report (USEPA, 2001b). A brief summary of quality implementation and assessment is provided in each of the following chapters. # 1.6 Project Documents and Products During project planning, LMMB participants developed study tools including work plans, a methods compendium, quality assurance project plans, and data reporting standards. Through these tools, LMMB participants documented many aspects of the study including information management and quality assurance procedures. Many of these documents are available on GLNPO's website at: http://www.epa.gov/glnpo/lmmb. #### LMMB Work Plan Designers of the LMMB Study have documented their approach in a report entitled *Lake Michigan Mass Budget/Mass Balance Work Plan* (USEPA, 1997a). The work plan describes the essential elements of a mass balance study and the approach used to measure and model these elements in the Lake Michigan system. This document was developed based upon the efforts of many Federal and State scientists and staff who participated in the initial planning workshop, as well as PIs. #### Quality Assurance Program/Project Plans The Lake Michigan Mass Balance Project Quality Assurance Plan for Mathematical Modeling, Version 3.0 (USEPA, 1998) documents the quality assurance process for the development and application of LMMB models, including hydrodynamic, sediment transport, eutrophication, transport chemical fate, and food web bioaccumulation models. #### The Enhanced Monitoring Program Quality Assurance Program Plan *The Enhanced Monitoring Program Quality Assurance Program Plan* (USEPA, 1997c) was developed in 1993 to ensure that data generated from the LMMB Study supports its intended use. #### LMMB Methods Compendium The Lake Michigan Mass Balance Project (LMMB) Methods Compendium (USEPA, 1997d, 1997e) describes the sampling and analytical methods used in the LMMB Study. The entire three volumes are available on GLNPO's website mentioned above. #### LMMB Data Reporting Formats and Data Administration Plan Data management for the LMMB Study was a focus from the planning stage through data collection, verification, validation, reporting, and archiving. The goal of consistent and compatible data was a key to the success of the project. The goal was met primarily through the development of standard formats for reporting environmental data. The data management philosophy is outlined on the LMMB website mentioned above. ## Lake Michigan LaMP "Annex 2" of the 1972 Canadian-American Great Lakes Water Quality Agreement (amended in 1978, 1983, and 1987) prompted development of Lakewide Area Management Plans (LaMPs) for each Great Lake. The purpose of these LaMPs is to document an approach to reducing input of critical pollutants to the Great Lakes and restoring and maintaining Great Lakes integrity. The Lake Michigan LaMP calls for basin-wide management of toxic chemicals. #### **GLENDA Database** Central to the data management effort is a computerized data system to house Lake Michigan Mass Balance and other project results. That system, the Great Lakes Environmental Monitoring Database (GLENDA), was developed to provide data entry, storage, access and analysis capabilities to meet the needs of mass balance modelers and other potential users of Great Lakes data. ## LMMB Data Reports This report is one in a series of data reports that summarize the data from monitoring associated with EPA's Lake Michigan Mass Balance Study. In addition to this data report on mercury, data reports are being published for atrazine (USEPA, 2001c) and PCBs and *trans*-nonachlor (USEPA, 2004). #### Future Documents and Products Following the completion of modeling efforts associated with the LMMB Study, GLNPO anticipates publishing reports summarizing the modeling results. In 2005, GLNPO also anticipates conducting a reassessment of Lake Michigan to calibrate and confirm modeling results with data collected 10 years after the initial LMMB sampling.